703159 VU Data-driven Analysis of Geodata
Sommersemester 2026 | Stand: 20.01.2026 | LV auf Merkliste setzenUniv.-Prof. Jan Beutel, PhD Univ.-Prof. Jan Beutel, PhD, +43 512 507 53443
Students gain a basic understanding of data-driven environmental modelling. By the end of the course, they are able to: (1) assess the contributions, strengths, limitations, and major trends of traditional machine learning (ML) methods in geoscience applications; (2) understand and compare the epistemic modelling cultures of physically-based geosciences and data-driven ML; (3) work with quantitative geoscientific data and identify their key characteristics; and (4) apply traditional ML algorithms and Bayesian inference methods to geoscientific problems and selected case studies.
Machine learning (ML) has rapidly become a key tool in geoscientific research, bridging traditionally separate research communities. This VU introduces data-driven environmental modelling at the intersection of traditional ML (excluding deep learning) and Bayesian statistics. After a short introduction to geoscientific practice, ML, probability theory, and statistics, the course focuses on hands-on applications of classification, clustering, feature extraction, Bayesian inference, and data fusion using Kalman filtering. Examples are drawn from glaciers, mountain permafrost, mountain meteorology, and natural hazards.
Short mid-term exam (20%) and a written report on a solved problem (80%). Active in-class participation is expected.
The course is aimed at MSc-level students in computer science, engineering, and geosciences. Deep prior knowledge of geosciences or machine learning is not required but is advantageous. Students are expected to have prior exposure to linear algebra, probability, and statistics, as well as coding experience in Python. Priority is given to MSc students; however, subject to capacity, advanced BSc students may also enroll.
Allocation of places in courses with a limited number of participants (PS, SE, VU, PJ)
In courses with a limited number of participants, course places are allocated as follows:
1. Students for whom the study duration would be extended due to the postponement are to be given priority.
2. If the criteria in no. 1 do not suffice, first, students for whom this course is part of a compulsory module are to be given priority, and second, students for whom this course is part of an elective module.
3. If the criteria in no. 1 and 2 do not suffice, the available places are drawn by random.
- Fakultät für Geo- und Atmosphärenwissenschaften
- Bachelorstudium Erdwissenschaften laut Curriculum 2018 (180 ECTS-AP, 6 Semester)
- Masterstudium Atmosphären- und Kryosphärenwissenschaften laut Curriculum 2015 (120 ECTS-AP; 4 Semester)
- Bachelorstudium Atmosphärenwissenschaften laut Curriculum 2025 (180 ECTS-AP, 6 Semester)
- Masterstudium Erdwissenschaften laut Curriculum 2021 (120 ECTS-AP, 4 Semester)
- Bachelorstudium Geographie laut Curriculum 2015 (180 ECTS-AP; 6 Semester)
- Fakultät für Mathematik, Informatik und Physik
- Masterstudium Informatik laut Curriculum 2021 (120 ECTS-AP, 4 Semester)
- Masterstudium Physik laut Curriculum 2020 (120 ECTS-AP, 4 Semester)
- Bachelorstudium Physik laut Curriculum 2025 (180 ECTS-AP, 6 Semester)
- Bachelorstudium Informatik laut Curriculum 2019 (180 ECTS-AP, 6 Semester)
- Fakultät für Technische Wissenschaften
- Bachelorstudium Elektrotechnik laut Curriculum 2018 (180 ECTS-AP, 6 Semester)
- Bachelorstudium Mechatronik laut Curriculum 2011 (180 ECTS-AP, 6 Semester)
- Masterstudium Mechatronik laut Curriculum 2013 (120 ECTS, 4 Semester)
- Masterstudium Elektrotechnik laut Curriculum 2022 (120 ECTS-AP, 4 Semester)
- Bachelorstudium Umweltingenieurwissenschaften laut Curriculum 2025 (180 ECTS-AP, 6 Semester)
- SDG 4 - Hochwertige Bildung: Inklusive, gleichberechtigte und hochwertige Bildung gewährleisten und Möglichkeiten lebenslangen Lernens für alle fördern
- SDG 9 - Industrie, Innovation und Infrastruktur: Eine widerstandsfähige Infrastruktur aufbauen, breitenwirksame und nachhaltige Industrialisierung fördern und Innovationen unterstützen
| Gruppe | Anmeldefrist | |
|---|---|---|
|
703159-0
703159-0 |
01.02.2026 08:00 - 21.02.2026 23:59 | |
| Amschwand D., Beutel J. | ||