Lehrveranstaltungen



INFO Universitätslehrgang Data Science - From Mathematical Foundations to Applications gemäß Curriculum 2019 (90 ECTS-AP, 4 Semester)
Zur übergeordneten Rubrik
Pflichtmodul 2: Methods of Data Science (22,5 ECTS-AP, 9 SSt.) (keine Lehrveranstaltungen)
Anmeldevoraussetzung: absolvierte Lehrveranstaltungen im Umfang von mindestens 15 ECTS-AP aus Pflichtmodul 1
Lernergebnis: Studierende erwerben tiefgehende Kenntnisse über Supervised Learning mittels Verteilungsregression, über Unsupervised Learning für multivariate Daten sowie Supervised Learning mittels algorithmischer Modelle. Sie besitzen die Fähigkeit, für eine konkrete Aufgabe eigenständig ein wahrscheinlichkeitstheoretisches Modell auszuwählen und anzupassen, insbesondere fällt darunter die Wahl geeigneter Antwortverteilung, Regressoren und Algorithmen zur Parameterschätzung. Sie sind in der Lage, dimensionsreduzierende Verfahren sowie Scaling, Clustering und Assoziationsanalyse anzuwenden. Für eine konkrete Problemstellung können sie eigenständig ein prädiktives Modell auswählen und anpassen, insbesondere setzen sie flexible Lernstrategien unter Verwendung entsprechender Bausteine (Base Learners, Kernels, Regeln usw.) sowie Hyperparameter-Tuning um.
Pflichtmodul 3: Applications in Data Science (25 ECTS-AP, 10 SSt.) (keine Lehrveranstaltungen)
Anmeldevoraussetzung: positive Beurteilung des Pflichtmoduls 1 und absolvierte Lehrveranstaltungen im Umfang von mindestens 15 ECTS-AP aus Pflichtmodul 2
Lernergebnis: Studierende erwerben detaillierte Kenntnisse über fortgeschrittene Methoden und deren Anwendungen zur Behandlung komplexer Data-Science-Problemstellungen aus einem bestimmten Anwendungsfeld. Sie können derartige Methoden adaptieren und/oder erweitern, um sie in unterschiedlichen Situationen anzuwenden. Studierende erwerben ein vertieftes Verständnis für ausgewählte State-of-the-Art-Methoden zur Behandlung fortgeschrittener Data-Science-Probleme. Sie können aktuelle Themen aus Data Science mit Fachexpertinnen und -experten aus dem akademischen Feld sowie aus Industrie und Wirtschaft diskutieren und in Form eines schriftlichen Berichts zusammenzufassen. Sie können reale Problemstellungen in Kooperation mit Partnerinnen und Partnern aus Industrie und Wirtschaft sowie dem akademischen Feld behandeln und die Ergebnisse gegenüber Fachexpertinnen und -experten sowie Endbenutzerinnen und -benutzern kommunizieren.
Master-Thesis (20 ECTS-AP) (keine Lehrveranstaltungen)

Hinweis:
  • Es können sich noch Änderungen im Lehrveranstaltungsangebot sowie bei Raum- und Terminbuchungen ergeben.
  • Bitte wählen Sie für das Lehrveranstaltungsangebot die Fakultät aus, der Ihre Studienrichtung zugeteilt ist.