Lehrveranstaltungen
Zur übergeordneten Rubrik
Pflichtmodul 1: Foundations of Data Science (22,5 ECTS-AP, 9 SSt.)
Anmeldevoraussetzung: keine
Lernergebnis: Die Studierenden erwerben ein tiefgehendes Verständnis für Learning-Umgebungen zur Behandlung von Data-Science-Aufgaben. Sie können mathematische Konzepte anwenden, um grundlegende Methoden des Data Science zu entwickeln und zu analysieren. Darüber hinaus haben sie einen Überblick über Erweiterungen solcher Methoden und deren Anwendungen. Die Studierenden können grundlegende Data-Science-Aufgaben mit einem geeigneten Softwaresystem wie etwa R oder Python ausführen, beispielsweise importieren, reinigen/transformieren, visualisieren und modellieren von Daten unter Verwendung grundlegender Werkzeuge. Sie können Zwischen- und Endergebnisse von Data-Science-Projekten sowohl gegenüber Fachexpertinnen und -experten als auch Endbenutzerinnen und -benutzern kommunizieren, beispielsweise in Form eines schriftlichen Berichts, von Präsentationsfolien, einer Web-App oder als Dashboard. Studierende können Daten verschiedenen Typs (numerisch, kategorial, räumlich und zeitlich) aus unterschiedlichen Quellen (Einzeldateien, Datenbanken, webbasierte Formate) zusammenführen und zusammenfassen, um sie anschließend mittels Data-Science-Methoden zu analysieren.
Pflichtmodul 2: Methods of Data Science (22,5 ECTS-AP, 9 SSt.)
(keine Lehrveranstaltungen)
Anmeldevoraussetzung: absolvierte Lehrveranstaltungen im Umfang von mindestens 15 ECTS-AP aus Pflichtmodul 1
Lernergebnis: Studierende erwerben tiefgehende Kenntnisse über Supervised Learning mittels Verteilungsregression, über Unsupervised Learning für multivariate Daten sowie Supervised Learning mittels algorithmischer Modelle. Sie besitzen die Fähigkeit, für eine konkrete Aufgabe eigenständig ein wahrscheinlichkeitstheoretisches Modell auszuwählen und anzupassen, insbesondere fällt darunter die Wahl geeigneter Antwortverteilung, Regressoren und Algorithmen zur Parameterschätzung. Sie sind in der Lage, dimensionsreduzierende Verfahren sowie Scaling, Clustering und Assoziationsanalyse anzuwenden. Für eine konkrete Problemstellung können sie eigenständig ein prädiktives Modell auswählen und anpassen, insbesondere setzen sie flexible Lernstrategien unter Verwendung entsprechender Bausteine (Base Learners, Kernels, Regeln usw.) sowie Hyperparameter-Tuning um.
Pflichtmodul 3: Applications in Data Science (25 ECTS-AP, 10 SSt.)
(keine Lehrveranstaltungen)
Anmeldevoraussetzung: positive Beurteilung des Pflichtmoduls 1 und absolvierte Lehrveranstaltungen im Umfang von mindestens 15 ECTS-AP aus Pflichtmodul 2
Lernergebnis: Studierende erwerben detaillierte Kenntnisse über fortgeschrittene Methoden und deren Anwendungen zur Behandlung komplexer Data-Science-Problemstellungen aus einem bestimmten Anwendungsfeld. Sie können derartige Methoden adaptieren und/oder erweitern, um sie in unterschiedlichen Situationen anzuwenden. Studierende erwerben ein vertieftes Verständnis für ausgewählte State-of-the-Art-Methoden zur Behandlung fortgeschrittener Data-Science-Probleme. Sie können aktuelle Themen aus Data Science mit Fachexpertinnen und -experten aus dem akademischen Feld sowie aus Industrie und Wirtschaft diskutieren und in Form eines schriftlichen Berichts zusammenzufassen. Sie können reale Problemstellungen in Kooperation mit Partnerinnen und Partnern aus Industrie und Wirtschaft sowie dem akademischen Feld behandeln und die Ergebnisse gegenüber Fachexpertinnen und -experten sowie Endbenutzerinnen und -benutzern kommunizieren.
Master-Thesis (20 ECTS-AP)
(keine Lehrveranstaltungen)
Hinweis:
- Es können sich noch Änderungen im Lehrveranstaltungsangebot sowie bei Raum- und Terminbuchungen ergeben.
- Bitte wählen Sie für das Lehrveranstaltungsangebot die Fakultät aus, der Ihre Studienrichtung zugeteilt ist.