Lehrveranstaltungen



INFO Universitätslehrgang Data Science - From Mathematical Foundations to Applications gemäß Curriculum 2019 (90 ECTS-AP, 4 Semester)
Zur übergeordneten Rubrik
Pflichtmodul 2: Methods of Data Science (22,5 ECTS-AP, 9 SSt.) (keine Lehrveranstaltungen)
Anmeldevoraussetzung: absolvierte Lehrveranstaltungen im Umfang von mindestens 15 ECTS-AP aus Pflichtmodul 1
Lernergebnis: Studierende erwerben tiefgehende Kenntnisse über Supervised Learning mittels Verteilungsregression, über Unsupervised Learning für multivariate Daten sowie Supervised Learning mittels algorithmischer Modelle. Sie besitzen die Fähigkeit, für eine konkrete Aufgabe eigenständig ein wahrscheinlichkeitstheoretisches Modell auszuwählen und anzupassen, insbesondere fällt darunter die Wahl geeigneter Antwortverteilung, Regressoren und Algorithmen zur Parameterschätzung. Sie sind in der Lage, dimensionsreduzierende Verfahren sowie Scaling, Clustering und Assoziationsanalyse anzuwenden. Für eine konkrete Problemstellung können sie eigenständig ein prädiktives Modell auswählen und anpassen, insbesondere setzen sie flexible Lernstrategien unter Verwendung entsprechender Bausteine (Base Learners, Kernels, Regeln usw.) sowie Hyperparameter-Tuning um.
Master-Thesis (20 ECTS-AP) (keine Lehrveranstaltungen)

Hinweis:
  • Es können sich noch Änderungen im Lehrveranstaltungsangebot sowie bei Raum- und Terminbuchungen ergeben.
  • Bitte wählen Sie für das Lehrveranstaltungsangebot die Fakultät aus, der Ihre Studienrichtung zugeteilt ist.